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Abstract

A cluster approach has been proposed to describe the process of heat transport in microscale. Molecular clustering is

described by integrating the Lennard-Jones potential over specific physical domains, forming cluster potentials that

possess repulsive and attractive forces sensitively varying with the geometrical shapes of the molecular clusters. The

cluster potentials thus developed provides a consistent approach for describing multi-scale heat transport, in that

different shapes/dimensions of the clusters take different exponents in the repulsive and attractive forces. A one-

dimensional example is given to illustrate the essence of the cluster dynamics simulation, emphasizing devious behavior

from molecular motion and replacement of a physical boundary by the cluster potential of a different scale.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A small-scale device, unlike the large-scale devices

containing millions of molecules, is composed of a lim-

ited number of molecules. The 0.1 lm film employed for

studying ultrafast heat transport in femtosecond laser

heating [1–6], for example, contains only thousands of

molecules that have limited capabilities in conducting

heat or transmitting load. As a result, thermal conduc-

tivity (measuring the energy-bearing capacity) and

elastic moduli (measuring the load-carrying capacity) of

the small-scale device may be very different from those

of the large-scale device made of the same materials.

Molecular dynamics (MD) simulation has been pro-

ven effective in modeling the process of heat transport in

microscale [7–9]. Most recently, in 1996, a two-volume

symposium [10] was published that summarizes the use

of MD simulations in microscale processing, solidifica-

tion, as well as prediction of microscale thermophysical

properties and modeling of microstructured surfaces. A

thorough review on the MD simulation became avail-
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able in 1999 [11], which covers a wider spectrum of MD

simulations including the use of normal and modified

Lennard-Jones (LJ) potentials for gases and liquids,

Stillinger and Weber [12] and Tersoff [13] potentials for

silicon, and the ab initio MD method that considers

electronic states by using the Schr€odinger wave equation
as the equation of motion to address the quantum-

mechanical effects [14,15]. MD simulation describes the

individual behavior of molecules by solving a large set of

coupled equations of motion that bridges all molecules

together, with the gradient of the molecular potential

serving as the driving forces. Thermomechanical re-

sponses, including temperature, heat flux vector, and

stress can then be evaluated based on the statistical

averages involving molecular positions, velocities, and

energies in accordance with the virial theorem [16,17],

for example. Symmetric conditions are usually required

at the boundaries of the computational cells, implying a

repetitive response of the molecular assembly in transi-

tion from one cell to another. The number of molecules

involved in the computational cell ranges from hundreds

(102) to 106, depending on the complexity of the targeted

behavior in the microsystem. As the number of mole-

cules increases in the computational cell, to keep com-

putational time manageable, the cutoff radius is usually

introduced in describing the intermolecular potential.
ed.
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Nomenclature

a; b radii of spheres (m)

A constant in the general form of cluster po-

tential

c central distance (m)

C1 constant in LJ potential (Jm12)

C2 constant in LJ potential (Jm6)

d distance between surfaces

E cluster potential (J)

F force (N)

m, n number densities of molecules (1/m3)

N1, N2 constants in the general form of cluster po-

tential

r distance (m)

R distance between the cluster center and the

representative plane (m)

U molecular potential (J)

x radius of disks (m)

y distance between molecule and the repre-

sentative point (m)

y0 distance between molecule and the cluster

center (m)

Greek symbols

h polar angle (rad)

q radial distance (m)

Subscripts and superscripts

D–S disk-to-sphere

LJ Lennard-Jones

M–D molecule-to-disk

S–S sphere-to-sphere

i, j molecule i and j
0 equilibrium

2D two-dimensional

3D three-dimensional

* nondimensional quantities
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The cutoff radius for the LJ potential, for example, is

roughly 2.6r [7], with (21=6r) being the position of

mechanical equilibrium at which the intermolecular

force is zero.

Beyond the already-complicated individual mole-

cules, complex systems in microscale may involve

molecular clusters of various shapes [18,19]. An example

would be the nano-diode made of nanotubes with hexa-

gonal clusters uniformly distributed on the circumfer-

ence. The hexagonal clusters are formed by joining an

even rolled graphite sheet (with semiconducting behav-

ior) to a spiral rolled sheet (metallic behavior). Hun-

dreds of thousands of molecules may be needed to

model just one hexagonal cluster, making it extremely

difficult to predict the functional behavior of a single

nanotube where hundreds of thousands of such hexag-

onal clusters are present. Creation of functional

nanomaterials poses the same challenge [20]. As hun-

dreds of thousands of nanophase agglomerates are col-

lected from a liquid-hydrogen cooled tube, with tens and

hundreds of molecules involved in each agglomerate,

interactions among such agglomerates, rather than the

individual molecules, would dominate the functionalities

of the consolidated (sintered) nanophase materials.

Conventional MD simulation should be able to char-

acterize the thermophysical properties for such complex

systems, at least in principle, but the numerical efforts

will be immense. In the continuous expansion of the MD

simulation capabilities, therefore, there is a need for

branching our efforts into modeling the dynamics of the

preformed clusters.
Aiming at the complex system consisting of nano-

phase assemblies as the building blocks, the present

work develops the cluster interaction potentials for

describing the physical behavior of complex microsys-

tem. The well-known LJ potential is used as the Green’s

function to derive the new potentials as numerous

molecules are clustered in various shapes, under the

assumption that the number of molecules involved each

cluster is sufficient large to produce a uniform distribu-

tion. It is shown that the exponents characterizing the

repulsive and attractive forces sensitively vary with the

cluster shapes, with the case of a nano-surface specially

derived to replace the symmetric boundary conditions

assumed in traditional MD simulation. One-dimensional

study follows, aiming at special characteristics of cluster

dynamics, as well as dynamic modeling involving clus-

ters/molecules at different scales.

2. Cluster potentials

Lennard-Jones potential is one of the most popular

models used in the MD simulation due to its simple form

and well-tabulated parameters for different materials:

UijðrijÞ ¼
C1

r12ij
� C2

r6ij
; Fij ¼ � dUij

drij
¼ 12C1

r13ij
� 6C2

r7ij
ð1Þ

The equilibrium position ðrð0Þij Þ is obtained from Fij ¼ 0,

or rð0Þij ¼ ð2C1=C2Þ1=6. As the two molecules are close, at

a distance smaller than rð0Þij , the repulsive force activates

and is characterized by the exponent 12. As the two
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Fig. 1. Spherical clusters composed of uniformly compacted

molecules. (a) Cluster potentials EðcÞ resulting from the LJ

potential ðUÞ exerting on any pair of molecules (i and j) in each

cluster. (b) Interaction potential between spherical clusters and

their relative positions.
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Fig. 2. Representative disk of differential thickness dr in Sphere

A and the planar coordinate system. Number density of mol-

ecules in the r-direction, mr, and that over the disk, m2D.
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molecules are far apart, at any distance greater than rð0Þij ,

the attractive force galvanizes and is characterized by

the exponent 6. Typical values of C1 and C2 are of the

order of 10�26 (J nm12) and C2 ¼ 10�23 (J nm6), respec-

tively [7,8].

A cluster defined in this work is an assembly of

molecules that are compacted uniformly in a physical

domain of a certain shape. It can be viewed as ad Its

physical size may be two to three orders of magnitude

greater than a molecule (measured in angstroms), but

the overall dimension remains in nanoscale, from na-

nometers to submicrons. The interaction potential be-

tween any pair of molecules, which are represented by i
and j in Fig. 1(a), is the LJ potential shown by Eq. (1).

As these molecules congregate and form clusters of

specific shapes, the major task is determination of the

cluster potential, represented by EðcÞ in Fig. 1(a), with c
being the distance between two clusters. Fig. 1(b) shows

two spherical clusters, A and B of radii a and b,
respectively, with the central distance denoted by c.
Molecules in each spherical cluster are assumed numer-

ous, uniformly distributed throughout with the number

densities of m (in Sphere A) and n (in Sphere B).

2.1. Molecule-to-sphere potential

Consider a representative molecule in Sphere B, de-

noted by point P in Fig. 1(b), which interacts with all the

molecules in Sphere A. The coordinate system employed

for deriving the resulting molecule-to-sphere potential is

illustrated in Fig. 2, where a representative disk of

thickness dr is further extracted from A to derive the

molecule-to-disk potential, as the first step. Lennard-

Jones potential exerts between P and the infinitesimal
area dAð¼ qdqdhÞ on the disk. With y ¼ ðq2 þ r2Þ1=2 in

place of rij in Eq. (1) and integrating the LJ potential,

now becoming UðyÞ with i � P and j � dA, over the

entire disk of radius x, the two-dimensional interaction

potential between P and the disk is

EM–Dðx; rÞ ¼ m2D

Z x

0

UðyÞj
y¼

ffiffiffiffiffiffiffiffiffi
q2þr2

p 
 qdq
Z 2p

0

dh

¼ 2pm2D C1

1

10r10

"(
� 1

10ðr2 þ x2Þ5

#

� C2

1

4r4

"
� 1

4ðr2 þ x2Þ2

#)
ð2Þ

where m2D measures the number of molecules per unit

area on the disk. In the limiting case that P is very close

to the disk, r ! 0, the asymptotic form of Eq. (2) is

lim
r! 0

EM–D ffi 2pm2D

C1

10r10

�
� C2

4r4

�
ðmolecular-to-diskÞ

ð3Þ

Though having a much more complicated form in gen-

eral, the repulsive and attractive indices in the molecu-

lar-to-disk potential sensitively change to the 10–4

relation, in contrast to the original 12–6 (LJ) relation, as

the distance between P and the disk is small ðr ! 0Þ.
Integrating EM–D in Eq. (2) for a disk of thickness (dr)
over the entire sphere with r ranging from ðy0 � aÞ to

ðy0 þ aÞ and instating the relation of x2 ¼ ½a2 � ðy0 � rÞ2�
in the integrand, the molecule-to-sphere potential fol-

lows,
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Fig. 3. Relative coordinates between two spherical clusters and

the use of E3D as the Green’s function in deriving the sphere-to-

sphere potential.
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EM–Sðy0Þ ¼
Z y0þa

y0�a
EM–Dðx; rÞjx¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ðy0�rÞ2

p 
 mr dr

¼ 2pm C1

1

90d9

	

� 1

ð80aÞd8
þ 1

ð80a2Þd7

� 
 
 
 � 2299

184320a9
þ 253

20480

� �
d þ 
 
 


�

� C2

1

12d3

	
� 1

ð8aÞd2
þ 1

ð8a2Þd � 5

48a3

þ 5

64a4

� �
d þ 
 
 


��
ð4Þ

where m ¼ ðmr 
 m2DÞ recovers the number density of

molecules per unit volume and the Taylor series

expansion in terms of d ¼ ðy0 � aÞ, the distance between
P and the surface of Sphere A, has been applied to reveal

the asymptotic behavior of EM–S as the value of d be-

comes small. In the limit of d ! 0, clearly,

lim
d ! 0

EM–S ffi pm
C1

45d9

�
� C2

6d3

�
:

ðmolecule-to-sphereÞ ð5Þ

The 10–4 relation further evolves into the 9–3 relation in

transit from the molecule-to-disk potential (Eq. (3)) to

the molecule-to-sphere potential (Eq. (5)).

Before continuing on, note that the LJ potential has

been used as the Green’s function in deriving the mol-

ecule-to-disk and the molecule-to-sphere potentials. The

process is identical to that in deriving the temperature

solution for area heating from the temperature solution

for a point heat source.

2.2. Sphere-to-sphere potential

The molecule-to-sphere potential derived in Eq. (4)

now serves as the Green’s function in describing the

sphere-to-sphere interaction, as illustrated in Fig. 3. The

molecule-to-sphere potential, E3D in Eq. (4), exists

between Sphere A and dA0 over the distance y0. The

infinitesimal area dA0ð¼ q0 dq0 dh0Þ is in place of the pre-

vious representative point P , which is located on the

representative disk of thickness dR in Sphere B.

Replacing y0 in Eq. (4) by ðq02 þ R2Þ1=2 and integrating

EM–S (the full form) over the entire disk with q0 2 ½0; x0�
and h0 2 ½0; 2p�, similarly, the disk-to-sphere potential

ðED–SÞ can be obtained from

ED–Sðx0Þ ¼ n2D

Z x0

0

EM–Sðy0Þjy0¼ ffiffiffiffiffiffiffiffiffiffi
q02þR2

p 
 q0 dq0
Z 2p

0

dh0

ð6Þ

The asymptotic result limit with d ! 0, where

dð¼ R� aÞ represents the distance from the center of the

disk to the surface of Sphere A, Eq. (6) gives
lim
d ! 0

ED–S ffi p2m 
 n2Da
C1

180d8

�
� C2

6d2

�
ðdisk-to-sphereÞ

ð7Þ

The terms containing x0 are all dropped out in the case of

d ! 0, because the sphere (of radius a) is very close to

the disk (of radius x0). In Eq. (7), n2D is the number

density of molecules per unit area on the disk (of

thickness dR) located within Sphere B. The 9–3 relation

(molecule-to-sphere potential) has evolved into the 8–2

relation (disk-to-sphere potential). Integrating the full

form of ED–S the one containing all terms in x0 now re-

placed by ½b2 � ðc� RÞ2�1=2, in the domain of R from

ðc� bÞ to ðcþ bÞ, we have the sphere-to-sphere poten-

tial:

ES–S ¼ p2mn C1

ab
1260ðaþ bÞd7

 "
� a2 þ 8abþ b2

7560ðaþ bÞ2d6
þ 
 
 


!

�C2

ab
6ðaþ bÞd

�
� 0ðd0Þ þ 
 
 


�#
ð8Þ

where n ¼ n2D � nR has been replaced and d ¼ c�
a� b refers to the distance between the surfaces of

two spheres. In the asymptotic limit of d ! 0, like-

wise,
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lim
d ! 0

ES–S ’
p2abmn
aþ b

C1

1260d7

	
� C2

6d

�
ðsphere-to-sphereÞ

ð9Þ

For nanoscale clusters of the same size ðb ¼ aÞ and

number densities ðn ¼ mÞ, in particular,

lim
d ! 0

ES–S ’ p2m2a
C1

2520d7

	
� C2

12d

�
ðidentical spheresÞ

ð10Þ

The 8–2 relation for the disk-to-sphere potential finally

evolves into the 7–1 relation for the sphere-to-sphere

potential, which is equivalent to the symbol EðcÞ em-

ployed in Fig. 1(a) as the two interacting clusters take

the form of spheres.

A crack tip in a continuum could be viewed as the

location where two clusters join together, separating at a

distance in which the attractive force prevails. Such a

distance cannot enter the repulsive regime because the

continuum concept used in stress analysis. The compo-

nent of the attractive force derived in Eq. (10),

ðpmÞ2aC2=ð12dÞ � 1=d, nicely captures the well-known

ð1=dÞ behavior of the strain energy density function

[21,22], which is a special form of potential energy in

lattice structures, regardless of different types of the

constitutive relations established on the macroscale level

[23,24]. Such a 1=d-behavior is an intrinsic behavior that

has also been found in flow potentials and Biot energy

near the singularities in thermal and flow fields [25].
Table 1

Asymptotic results of cluster potentials, forces, and equilibrium posit

Clusters types Cluster potentials

Molecule-to-molecule
C1

d12
� C2

d6

Molecule-to-nanowire (semiinfinite) pm1D

63C1

512d11
� 3C2

16d5

� �

Molecule-to-nanowire (infinite) pm1D

63C1

256d11
� 3C2

8d5

� �

Nanowires pm2
1D

C1

5d10
� C2

2d4

� �

Molecule-to-nanosurface pm2D

C1

5d10
� C2

2d4

� �

Molecule-to-sphere pm
C1

45d9
� C2

6d3

� �

Disk-to-sphere pmn2Da
C1

180d8
� C2

6d2

� �

Spheres (identical) p2m2a
C1

2520d7
� C2

12d

� �

Sphere-to-nanosurface (infinite) p2mn2Da
C1

1260d7
� C2

6d

� �
2.3. Other geometry

Eqs. (2)–(10) demonstrate the ways in which the 12–6

(LJ) intermolecular potential evolves into the 7–1 cluster

potential as the nano-species evolve from molecules to

spheres. Geometrical evolution from a point (molecule),

a disk, to a sphere implies participation of clusters of

various shapes crossing several orders of magnitude in

physical scales. In modeling the multi-scale interaction

effects via the cluster potential thus developed, this

would involve a simple change of the indices (12–6 or 7–

1) reflecting the shape-dependent, and hence the scale-

dependent, repulsive and attractive forces.

Table 1 summarizes the asymptotic cluster potentials

assuming a small distance d. The cluster forces result

from the spatial derivative of the cluster potential with

respect to d and the mechanical equilibrium positions

result from the value of d at which the cluster forces

vanish. In all cases, the difference between the repulsive

(12 in the LJ potential) and attractive (6) indices always

keeps at six (6). Both repulsive and attractive indices

decrease as the dimensionalities of the participating

clusters increase. For cluster geometry involving a

molecule (point, dimension 0) or a nanowire (line,

dimension 1), for example, both repulsive and attractive

indices reduce by a number that is the sum of the total

dimensions of the participating clusters. The molecule-

to-nanosurface (dimension 2) potential, for instance,

reduces the repulsive index from 12 (molecule-to-mol-

ecule) to 12� ð2þ 0Þ ¼ 10. Exceptions may exist for
ions

Cluster forces Equilibrium positions

12C1

d13
� 6C2

d7

2C1

C2

� �1=6

pm1D

693C1

512d12
� 15C2

16d6

� �
231C1

160C2

� �1=6

pm1D

693C1

256d12
� 15C2

8d6

� �
231C1

160C2

� �1=6

2pm2
1D

C1

d11
� C2

d5

� �
C1

C2

� �1=6

2pm2D

C1

d11
� C2

d5

� �
C1

30C2

� �1=6

pm
C1

5d10
� C2

2d4

� �
2C1

5C2

� �1=6

pmn2Da
2C1

45d9
� C2

3d3

� �
2C1

15C2

� �1=6

p2m2a
C1

360d8
� C2

12d2

� �
C1

30C2

� �1=6

p2mn2Da
C1

180d8
� C2

6d2

� �
C1

30C2

� �1=6
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clusters involving finite 2D (disks) or 3D (spheres)

geometries. In this case, the rule is to add one (1) to the

result due to the additional integration performed in the

polar direction. In the disk-to-sphere potential, for

example, the repulsive index is 12� ð2þ 3Þ þ 1 ¼ 8

whereas the attractive index is 8� 6 ¼ 2. Such a nice

feature results from the polynomial form of the LJ

potential and the processes of progressive integrations

as the dimensionality of the participating cluster in-

creases.

The results shown in Table 1 suggests the following

form for the general expression of the cluster potential,

EðdÞ ¼ A
C1

N1dm

�
� C2

N2dn

�
ð11Þ

Except for C1 and C2, which are intrinsic constants in the

intermolecular (LJ) potential, all coefficients and indices

are cluster-shape dependent. For spherical clusters, as an

example, A ¼ ðpmÞ2a, N1 ¼ 2520, N2 ¼ 12, m ¼ 7 and

n ¼ 1. In molecule-to-molecule interactions, as another

example, A ¼ 1, N1 ¼ 1, N2 ¼ 1, m ¼ 12 and n ¼ 6.

While N1, N2, m, and n are shape-dependent constants,

coefficient A always depends on the characteristic length

of the cluster (such as radius a for a spherical cluster)

and the number density of molecules included in the

cluster. Eq. (11) can be made nondimensional by intro-

ducing the potential-well-depth ðE0Þ at the equilibrium

distance ðd0Þ:

dEðdÞ
dðdÞ ¼ 0 at d ¼ d0; Eðd0Þ ¼ �E0 ðE0 > 0Þ

ð12Þ

Eq. (11) then becomes

E� ¼ E
E0

¼ 1

6

n
Dm

�
� m
Dn

�
;

with D ¼ d
d0

; and consequently;

F ¼ � dE
dðdÞ

) F � ¼ F
ðE0=d0Þ

¼ mn
6

1

Dmþ1

�
� 1

Dnþ1

�
ðclustersÞ

ð13Þ

where in terms of the parameters A, N1, N2, m, and n in

the cluster potential,

d0 ¼
mN2C1

nN1C2

� �1=6

; E0 ¼
6AC1

nN1

mN2C1

nN1C2

� ��m=6

ð14Þ

In the case of the LJ potential, A ¼ 1, N1 ¼ 1, N2 ¼ 1,

m ¼ 12 and n ¼ 6, the reference values become

d0;LJ ¼
2C1

C2

� �1=6

; E0;LJ ¼
C2

2

4C1

ð15Þ
Fig. 4 displays the cluster potentials, Eq. (13), nor-

malized on the same bases of d0;LJ and E0;LJ Generally

speaking, the cluster potential has a shorter equilibrium

distance than the L-J potential, due to the larger mass

of the cluster as molecules congregate into various

shapes. Both the potential-well-depth and the equilib-

rium position decrease as the value of m and n de-

creases, which implies increase of the dimensionality of

the cluster.

Based on the equilibrium values in each potential, as

defined by d0 and E0 in Eq. (14), Fig. 5 displays the

cluster potentials and forces for clusters with increasing

dimensionalities, i.e., the values of m and n. While

maintaining similar behaviors in the repulsive regime

ðD < 1Þ, in terms of the more gradual change of the

cluster potential (left) and the lower peak and the

broader distribution of the cluster forces (right), clus-

ters of higher dimensions (such as the case of sphere-to-

sphere) behave more smoothly in the attractive regime

ðD > 1Þ due to the stronger cumulative behavior over

more molecules in the clusters. The interaction force

between two molecules (LJ-potential) vanishes as the

distance between two molecules exceeds approximately

2:6d0, d > 2:6d0, which coincides with the threshold

value of the cutoff radius employed in Refs. [7,8] for

improving the numerical efficiency. The cluster of

higher dimensions, on the other hand, has a longer

range of influence, with the effective distance ðdÞ
extending well beyond 7d0ðd > 7d0Þ Numerically, this

implies a longer computational time when employing

the cluster model in simulating the functional nano-

phase materials.

The asymptotic potential shown in Eq. (13) repre-

sents the dominating terms as the distance between

adjacent clusters is small ðd ! 0Þ. For identical spheres
ða ¼ bÞ, the general expression of the nondimensional
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Eq. (14).
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potential involves both the nondimensional radius

ðA ¼ a=d0Þ and surface distance ðD ¼ d=d0Þ:

E�
S–S

¼ 1

9450AD7ð2Aþ DÞ8ð4Aþ D7Þ

�


� 2A2 859; 320A3D17

�
þ 77; 070A2D18 þ 4200AD19

þ 105D20 þ 7; 864; 320A14ð � 1þ 7D6Þ

þ 655; 360A13Dð � 59þ 546D6Þ þ 6720A5D9

� ð � 25þ 5244D6Þ

þ 840A4D10ð � 10þ 7737D6Þ

þ 57; 344A11D3ð � 2009þ 30; 600D6Þ

þ 32; 768A12D2ð � 2633þ 31; 395D6Þ

þ 13; 440A7D7ð � 584þ 31; 523D6Þ

þ 3360A6D8 � ð � 446þ 42; 005D6Þ

þ 14; 336A10D4ð � 7117þ 139; 365D6Þ

þ 10; 752A9D5 � ð � 5821þ 150; 090D6Þ

þ 2688A8D6ð � 9967þ 355; 865D6Þ
�

þ 105D7ð2Aþ DÞ8 � ð4Aþ DÞ7

� tanh�1 1

�	
þ D

A

�
� tanh�1 3

�
þ D

A

���
ð16Þ
The asymptotic expression, Eq. (13) with m ¼ 7 and

n ¼ 1 for identical spheres, is a close approximation in

the full rage of D as A becomes large ðA > 50Þ. Under a

smaller value of A, say A ¼ 10 or a ¼ 10d0, the asymp-

totic potential is greater than the full potential but less

than 20 percent, which mainly occurs in D < 5. The two

potentials become indistinguishable for D > 5.
3. Dynamic simulations

The cluster potentials can be readily implemented

into any computer code employing the MD simulation.

Especially for loosely packed assemblies in microscale

where the cluster radius is small comparing to the dis-

tance between clusters, the change only involves the

exponents describing attractions and repulsions, i.e., the

values of m and n, and the coefficients A, C1, C2, N1, and

N2 in Eq. (11). The procedures calculating thermal

properties of nanoscale assemblies [7–9,26] remain the

same, which will appear in our communication in the

near future.

To better describe the unique features in cluster

dynamics, we model the one-dimensional interactions

among N identical spherical clusters. In terms of two

general clusters located at xi and xj in the one-dimen-

sional array, i ¼ 1; 2; . . . ;N , the nondimensional form of

equations of motion can be written as
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€Xi ¼
dVi
ds

¼ d2Xi

ds2
¼
XN
j¼1

j 6¼i

Fji

¼ �mn
XN
j¼1

j 6¼i

1

jXi � Xjjmþ1

"
� 1

jXi � Xjjnþ1

#
;

Fij ¼ �Fji where X ¼ x
d0

;

s ¼ tffiffiffiffiffiffiffiffi
6Md2

0

E0

q ; V ¼ v

d0=
ffiffiffiffiffiffiffiffi
6Md2

0

E0

q ð17Þ

This version of the nondimensional scheme includes m
and n, the exponents describing the attractive and

repulsion of the cluster potential. For identical clusters

of a spherical shape, as shown in Table 1, m ¼ 7 and

n ¼ 1.

Eq. (17) represents a set of nonlinearly coupled or-

dinary differential equations to be solved for the cluster

displacements ðXiÞ and velocities ðViÞ in the time history.

The ODE solver, IVPAG in the IMSL package is used

for this purpose. The global tolerance is set to 10�6 for

achieving convergent numerical integrations in this

work. Fig. 6 shows the dynamic behavior of ten (10)

identical spherical clusters where the motion is set forth

under the following initial conditions:

Xið0Þ ¼ 1:1ði� 1Þ; _Xið0Þ ¼ 0

for i ¼ 1; 2; . . . ; 10 ð18Þ

Comparing to the classical molecular dynamics simula-

tion shown by the short dashes in Fig. 6, oscillation of

clusters occurs at a much lower frequency with a much

larger amplitude, which are more evident for clusters

near the two ends of the 10-cluster assembly, i.e., clus-
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Fig. 6. Dynamic behavior of 10 identical spherical clusters:

solid lines represent cluster dynamics and dashed lines represent

molecular dynamics.
ters no. 1–3 and 8–10. Comparing to the classical

molecular dynamics, the lower frequency results from

the larger mass of the clusters whereas the larger

amplitude results from the larger inertia carried by the

clusters in motion. In converting into the physical scales

of space and time, note that x ffi 0:18X (nm) and

t ffi 1:26s (ns), which apply to all results shown in this

work.

Maxwell–Boltzmann velocity distribution is a neces-

sary condition for assuring sufficient number of particles

employed in the dynamic simulation [9]. In a quasi-sta-

tionary response, the time-average of the particle

velocity, �v or V defined in Eq. (17), must follow the

relation

DNV

N
� P ¼ M

2pkBT

� �
exp

"
� M�v2

2pkBT

#
� D�v

¼
exp � V

2

2�h

� �
ffiffiffiffiffiffiffiffi
2p�h

p � DV ð19Þ

Eq. (19) measures the probability of having ðDNV Þ
clusters (among the total of N clusters) that have a time-

averaged velocity within V þ DV . Since the averaged

temperature, T or �h ¼ T=ðE0=6kBÞ in Eq. (19), is related

to the averaged velocity by

1

2
Mv2 ¼ 3

2
kBT ; or

�h ¼ V
2

3
in a nondimensional form ð20Þ

the probability is a strong function of the averaged

velocity ðV Þ. Fig. 7 shows the evolution of the proba-

bility density curve as the number of clusters increases

from 10 to 200. Although better agreement with the
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Fig. 7. N clusters approaching the Maxwell–Boltzmann veloc-

ity distribution: the cases of N ¼ 10, 100, and 200.

Xið0Þ ¼ 1:1ði� 1Þ, _Xið0Þ ¼ 0 for i ¼ 1; 2; . . . ;N .
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Maxwell–Boltzmann distribution can be achieved by the

use of more clusters, the case of N ¼ 100 may be most

cost-effective in view of its close agreement and the

computational time that exponentially increases with the

number of clusters used in the simulation. In Fig. 7, for

N ¼ 100, the averaged temperature is �h ¼ 2:5038� 10�3

and the peak value of the probability is approximately

0.997, which occurs at V ¼ 0.

Fig. 8(a) shows the dynamic behavior in a nanophase

assembly consisting of 100 clusters. Under the same

initial conditions described by Eq. (18) with i ranging
from 1 to 100 in this case, the first ði ¼ 1Þ and last

ði ¼ 100Þ cluster are held in place at all times, i.e.,
_X1ðsÞ ¼ 0 and _X100ðsÞ ¼ 0, to simulate bounded motion

by rigid confiners. The nonequilibrium behavior, and

consequently the nonequilibrium thermomechanical re-
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Fig. 8. (a) Dynamic simulation of 100 clusters under the fol-

lowing conditions: Xið0Þ ¼ 1:1ði� 1Þ and _Xið0Þ ¼ 0 for

i ¼ 1; 2; . . . ; 100; _X1ðsÞ ¼ 0 and _X100ðsÞ ¼ 0. (b) Dynamic sim-

ulation of 98 molecules (i ¼ 2 to 99) bounded by 2 stationary

microsurfaces (i ¼ 1 and 100). The ratios M0=M ¼ 0:1,

E=E0 ¼ 0:93, and d0=d ¼ 1:11 are used in Eq. (21).
sponses discussed later, persists mainly in s < 170 for all

clusters. A quasi-stationary response seems to prevail

after s ffi 300, in the sense that continued oscillations

take place around a constant mean for each cluster. This

should be the time domain, s > 300, beyond which

steady-state properties such as thermal conductivity

[7,8,26], heat capacity [9] (for energy-carrying capacity)

or Young’s modulus [10] (load-bearing capacity) are

estimated from the averaged response of the clusters.

Calculations in support of this important task are sim-

ilar to those employing the MD simulations.

A salient feature in the cluster approach is description

of a physical boundary in terms of a cluster potential with

different exponents and coefficients characterizing

attractions and repulsions. An example is given in Fig.

8(b), where 98 molecules (i ¼ 2–99 with m ¼ 12 and

n ¼ 6) are bounded by two stationary planar clusters

(i ¼ 1 and 100 with m ¼ 10 and n ¼ 4) in setting forth

their motion. The values of m ¼ 12 and n ¼ 6 are used in

Eq. (17) for the molecular motion governed by the tra-

ditional LJ potential, with i ¼ 2–98. In describing the

interactions involving the first ði ¼ 1Þ or last ði ¼ 100Þ
planar cluster, the values of m and n are replaced by 10

and 4, respectively, and Eq. (16) is changed to the fol-

lowing form:

€Xj ¼ �mn
M0

M

� �
E
E0

� �XN
i¼1

i 6¼j

1
d0
d

� �mjXi � Xjjmþ1

"

� 1
d0
d

� �njXi � Xjjnþ1

#
;

m ¼ 10; n ¼ 4 for planar clusters; i ¼ 1 or N

ð21Þ

The subscript ‘‘0’’ refers to the molecules (atoms). Eq.

(10) involves the mass-ratio of M0 (mass of molecules) to

M (mass of planar clusters), ratio of the potential-well-

depth E0 to E, and the equilibrium-distance-ratio d0 to d.
A physical boundary, two bounded planes in this case,

can thus be described by the use of a different cluster

potential, along with involvement of the three ratios in

the equation of motion. Fig. 8(b) results from the use of

M0=M ¼ 0:1, E=E0 ¼ 0:93, and d0=d ¼ 1:11, which are

estimated from the potential curves shown in Fig. 4.

Unique capabilities of the cluster model in describing

multi-scale interactions now become clear. Different

clusters of different shapes, and consequently different

exponents characterizing attractions and repulsions, can

be introduced to model multi-scale interactions in

complex nanostructures. Different clusters are accom-

modated by a simple change of the attractive and

repulsive exponents according to the cluster shape, and

involving the various ratios in Eq. (21) is merely

straightforward.
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4. Conclusion

Cluster potentials have been derived in this work

under a wide variety of cluster geometries. The molec-

ular LJ potential has been used as a Green’s function

to derive the cluster potential analytically. As mole-

cules congregate in different shapes in microscale, the

exponents characterizing attractions and repulsions

sensitively vary, which may be very different from the

12–6 relation (LJ potential). Dynamic behavior of

clusters has been analyzed, with emphasis on the

deviations from that driven by the LJ potential on the

molecular level. The group behavior of clusters in-

cludes a lower frequency, but much larger amplitude as

they interact in a nanophase assembly. Salient features

of the cluster approach include modeling a physical

boundary by a cluster potential with different expo-

nents of attraction and repulsion, which can easily be

expanded to include nanostructures with extreme

complexities. The cluster potential does involve a

longer range of influence, approximately 7–8d0 as

compared to the 2–3d0 in the classical MD simulation.

The interaction force over a longer range implies the

need for specifying a larger cutoff radius in the dy-

namic simulation, resulting in a longer computational

time that is a counterbalanced effect to the savings

from consolidating molecules into clusters. Since the

number of participating species (number of clusters

versus number of molecules) in the computational

domain is the main cause for exhausting the compu-

tational time, and only a very limited number of

clusters would be required in the longer range of the

interaction force due to their larger dimensions, it is

anticipated that the saving from the potentially much

less clusters involved in the computational domain

would suppress the little investment made toward

covering the interaction forces over a longer range.

Dynamic simulation performed in this work aims to

reveal unique features in the cluster approach, by using

the least number of clusters/molecules in the computa-

tional domain to reduce the unnecessary complexity.

Much more clusters/molecules will be needed to capture

detailed behaviors in real devices. The cluster model

established in this work, in addition, is only valid for

loosely compacted assembly, where the radius of the

spherical cluster is small comparing to the distance be-

tween two clusters. Should a tightly compacted assembly

be considered, radius of the cluster should be considered

in the dynamic equations of motion, and a factor of 2A,
with A ¼ a=d0 being the nondimensional radius of

identical spheres, needs to be subtracted from jXi � Xjj
in Eq. (17). Along with detailed computations for the

thermomechanical properties, including extension of the

virial theorem for calculating heat flux and stresses

transmitted through clusters, the difference between
loosely and tightly compacted assemblies shall be re-

ported in the near future.
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